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ABSTRACT 
Accurate models of operator workload in highly automated ground 

vehicles could inform interface design decisions, predict performance impacts of 

new systems, and evaluate existing systems. This paper summarizes an existing 

methodology for modeling human operator workload, demonstrates its 

application to automated ground vehicles, and discusses its value in development, 

certification, and acquisition of autonomous military ground systems. 

 

INTRODUCTION 
Autonomous Ground Systems (AGS) play a 

significant role in the DoD’s Third Offset 

Strategy. As technology matures and more 

automation-enabled vehicles are fielded the role of 

automation in these ground systems becomes more 

complex. Automation has the potential to decrease 

operator workload, increase efficiency, and 

maintain high levels of safety, as we have seen in 

aviation [1]. However, automation can also 

introduce new cognitive demands in the form of 

knowledge requirements, data management tasks, 

and attentional demands [2]. A large volume of 

human factors research has focused on 

understanding how operators interact with 

automation [3]. This research has demonstrated 

that introducing new automation without regard 

for human operators can lead to unforeseen 

problems that risk the potential gains of new 

technologies [1]. In order to support the step 

increase in performance required for the Third 

Offset Strategy it is critical to assess the impact on 

human operators as AGS are implemented into the 

sensor, C4I, and support grids.  

Previous research we have worked on [4] as well 

as other studies [5-6] have demonstrated that one 

of the major consequences of automation is 

changes to operator workload. As new automation 

is implemented operator workload changes 

depending on how much monitoring of the 

automation is required, how much cross-checking 

of the automation is required, how much crew 

coordination is required, and how much time or 

effort for task management is required [4]. System 

designers can optimize operator workload by 

ensuring that automation is implemented where it 

is most beneficial to the operator, reduces 

complexity, and does not overwhelm the operator 

[7]. In order to achieve optimal workload in AGS 

designers must be able to assess the operator 

workload levels associated with different 

configurations of automation and human operators 

involved in the performance of missions. 

The purpose of this paper is to summarize an 

existing methodology for modeling human 
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operator workload, demonstrate its application to 

automated ground vehicles, and discuss the value 

for development, certification, and acquisition of 

autonomous military ground systems.  

 

WORKLOAD MODELING 
As military systems become increasingly more 

complex they require system operators to process 

increasingly larger amounts of information. In 

order to understand the performance impacts of 

these complex systems the Human Research and 

Engineering Directorate of the U.S. Army 

Research Laboratory (ARL) has developed, 

applied, and validated the Improved Performance 

Research Integration Tool (IMPRINT) [8]. 

IMPRINT was originally developed to assess the 

mental workload associated with different 

configurations of soldiers and complex equipment 

[7]. It has since been used in a variety of systems 

and demonstrated to be useful for identifying peak 

levels of workload that indicate which tasks 

should be reallocated, redesigned, or automated 

[9]. The tool has been successfully used to 

determine function allocations in U.S. Navy 

destroyers [10], determine the number of operators 

needed in Special Operations command stations 

[11], determine the crew size needed for the U.S. 

Army automated artillery system [12], determine 

the performance effects of the U.S. Army Land 

Warrior integrated fighting system [13], and most 

recently used by the authors of this paper to 

determine function allocation among crew 

members for new capabilities in the C-130H. 

IMPRINT models human performance using a 

task network architecture approach. Human 

behavior within complex military systems is 

organized by the missions that operators perform. 

Each mission is then decomposed into smaller 

elements according to the tasks that must be 

accomplished. Tasks are continued to be broken 

down into subtasks until all human-system 

interaction is described as a closed-loop function. 

Once all behavior is broken down into small 

elements tasks and subtasks are linked together 

and organized according to system task sequence 

to build the structure of the task network model 

[14].  

Once the structure of the task network model is 

built IMPRINT can be used to evaluate system 

performance using a detailed analysis of operator 

workload. Workload is analyzed at each subtask, 

for each operator, for each action, with each 

specific equipment interface. IMPRINT uses a 

workload evaluation method based on Multiple 

Resource Theory [15]. Workload is evaluated for 

each Visual, Auditory, Cognitive, and 

Psychomotor (VACP) dimension [16].  

Validation studies have shown that the VACP 

method has good predictive validity, providing 

workload measures that correlate with subjective 

workload ratings from real operators, and 

predicting the same performance differences 

observed in real systems [7]. 

The VACP scale, included in Table 1, contains 

different 7.0 point interval scales with verbal 

anchors for each mental resource. Each task within 

the task network model is given separate visual, 

auditory, cognitive, and psychomotor ratings 

depending on the demands they place on each 

component. For instance, if a task requires 

operators to identify whether a system is ready by 

detecting a light, it is given a visual workload 

rating of 1.0, but if a task requires operators to 

identify whether a system is ready by reading, it is 

given a visual workload rating of 5.9. 

Once all elements within the task network have 

workload ratings the model is ready to run. The 

model structure identifies the tasks that must be 

accomplished for each mission, the sequence of 

subtasks that are performed, which operators 

perform them, and the workload demands 

imposed. The workload profile for each mission 

can then be analyzed to identify aspects of the 

system design that are complex, overwhelming, or 

degrade performance. 

IMPRINT has been used throughout the lifecycle 

of a wide array of complex military systems and 

may be a valuable tool for evaluating AGS.  
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APPLICATION TO GROUND VEHICLES 
The application of IMPRINT to automated 

ground vehicles is discussed using a detailed 

example. In order to keep this paper Distribution 

A and releasable to the public, the example is 

focused on evaluating the capabilities of 

automated systems that are currently 

commercially available in passenger vehicles. 

Nevertheless, all the methods, analyses, and 

applications discussed are the same across AGS. 

In this example we apply IMPRINT to compare 

manual driving, Tesla Autopilot, and Cadillac 

Super Cruise™ for the task of maintaining a lane 

during Interstate highway driving. We begin with 

a task network approach and decompose the task 

of using automation into the following subtasks: 

Manually Driving, Engaging Automation, 

Confirming Engagement, “Driving” with 

Automation, Automation Disengagement, and 

Manual Disengagement. 

Once the task is decomposed we apply the 

VACP workload scale to each subtask. We begin 

with Manual Driving. Manual Driving requires the 

driver to continuously scan the road and monitor 

the position of the vehicle in relation to the lane 

markings as well as other vehicles on the road, 

thus it receives a visual workload of 7.0 on the 

VACP scale. Manual Driving can be performed 

without necessarily requiring auditory activity, 

thus is receives a VACP scale rating of 0. For 

cognitive activity, Manual Driving requires the 

driver to evaluate and judge several aspects, 

including own speed, speed of other vehicles, and 

the intention of other drivers, thus is receives a 

cognitive workload of 6.8. Finally, for 

psychomotor activity, Manual Driving requires the 

driver to continuously adjust the steering wheel 

and pedals, thus it receives a psychomotor rating 

of 2.6 on the VACP scale. 

Once the baseline workload for manual driving is 

assed in each VACP dimension we move on to 

adding the automation subtasks. We begin with 

Engaging the Automation. For visual workload, 

both Tesla Autopilot and Cadillac Super Cruise™ 

require the driver to visually detect a steering 

wheel icon on the dash (1.0 VACP rating), while 

also still manually driving (7.0 VACP rating), thus 

the total visual workload is 8.0 for both systems. 

No auditory activity is required for engagement, 

so auditory workload remains at 0. For cognitive 

workload, the driver had to make additional 

decisions about the automation in addition to the 

evaluations and judgements while manually 

driving (6.8 VACP rating). With Tesla Autopilot 

the driver must make a simple association between 

the steering wheel icon on the dash and engaging 

the automation (1.0 VACP rating), thus the total 

 Visual   Auditory 

1.0 Visually Register/Detect (detect occurrence of image)  1.0 Detect/Register Sound (detect occurrence of sound) 

3.7 Visually Discriminate (detect visual differences)  2.0 Orient to Sound (general orientation/attention) 

4.0 Visually Inspect/Check (discrete inspection/static condition)  4.2 Orient to Sound (selective orientation/attention) 

5.0 Visually Locate/Align (selective orientation)  4.3 Verify Auditory Feedback (detect anticipated sound) 

5.4 Visually Track/Follow (maintain orientation)  4.9 Interpret Semantic Content (speech) 

5.9 Visually Read (symbol)  6.6 Discriminate Sound Characteristics (detect auditory differences) 

7.0 Visually Scan/Search/Monitor (continuous/serial inspection)  7.0 Interpret Sound Patterns (pulse rates, etc.) 

     

 Cognitive   Psychomotor 

1.0 Automatic (simple association)  1.0 Speech 

1.2 Alternative Selection  2.2 Discrete Actuation (button, toggle, trigger) 

3.7 Sign/Signal Recognition  2.6 Continuous Adjustive (flight control, sensor control) 

4.6 Evaluation/Judgment (consider single aspect)  4.6 Manipulative 

5.3 Encoding/Decoding, Recall  5.8 Discrete Adjustive (rotary, thumbwheel, lever position) 

6.8 Evaluation/Judgment (consider several aspects)  6.5 Symbolic Production (writing) 

7.0 Estimation, Calculation, Conversion  7.0 Serial Discrete Manipulation (keyboard entries) 

Table 1: The Visual Auditory Cognitive Psychomotor (VACP) Workload Scale. 
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cognitive workload was 7.8. With Cadillac Super 

Cruise™ the driver must make an alternative 

selection, first engaging the radar cruise control, 

then engaging Super Cruise, thus  a 1.2 VACP 

rating is given in addition to the 6.8 VACP rating 

for manual driving, for a total of 8.0 VACP rating. 

For psychomotor workload, both Tesla Autopilot 

and Cadillac Super Cruise™ require the driver to 

perform a discrete actuation (2.2 VACP rating) via 

a button or knob to activate the automation while 

also continuing to adjust the steering wheel and 

pedals (2.6 VACP rating), thus both systems 

receive a total psychomotor workload rating of 

4.8. 

Once both systems are evaluated in all VACP 

dimensions for the first subtask of Engaging 

Automation the same process is applied to the next 

subtask of Confirming Engagement, and then so 

on to “Driving” with Automation, Automation 

Disengagement, and Manual Disengagement. The 

end result of all VACP ratings, for all subtasks, for 

each system is included in Table 2. The results are 

then graphed to view workload for each dimension 

and in total, as demonstrated in Figure 1. 

Looking at Figure 1 we can first see some trends 

across both systems. In general both Tesla 

Autopilot and Cadillac Super Cruise™ briefly 

increase driver workload during engagement and 

disengagement tasks. This is to be expected since 

the automation must be engaged while the driver 

is still also maintaining manual control of the 

vehicle. On the other hand, once automation is 

engaged, both Tesla Autopilot and Cadillac Super 

Cruise™ decrease driver workload in comparison 

to manual driving. Overall this type of analysis 

shows where the addition of automation is 

beneficial to operator workload and where it is 

not; however, the analysis also reveals some 

differences between the two systems.  

Looking at Figure 1 again, we see that Tesla 

Autopilot induces more workload on the operator 

during engagement and disengagement than 

Cadillac Super Cruise™ does. This difference in 

workload stems from each system’s design. With 

Tesla Autopilot the driver must confirm that the 

system is engaged by detecting a visual difference 

in the color of the steering wheel icon on the right 

of the speedometer, resulting in a visual workload 

rating of 3.7. With Cadillac Super Cruise™ the 

driver must confirm that the system is engaged by 

visually registering that the top of the steering 

wheel has now been illuminated green, resulting in 

a visual workload rating of 1.0. 

Figure 1 also shows a difference in workload 

while “Driving” with Automation across the two 

systems. Although both systems decreased 

workload levels in comparison to manual driving, 

Tesla Autopilot requires drivers to maintain their 

hands on the steering wheel, thus imposing more 

psychomotor workload on drivers than the 

Cadillac Super Cruise™ system which is a hands 

free system. 

 

DISCUSSION 
Our goal for this paper was to summarize the 

IMPRINT approach to human workload modeling 

and discuss a detailed example of how it can be 

applied to inform design decisions in AGS. Our 

example compared manual driving, Tesla 

Autopilot, and Cadillac Super Cruise™ while 

maintaining a lane on an Interstate highway. The 

results demonstrated that IMPRINT can be used to 

evaluate the performance impacts of new ground 

vehicle automation in several ways. First, this 

methodology can be used to evaluate system 

design decisions. In our example we found greater 

visual workload with the system indicating that 

the automation is engaged by changing the color 

of an icon versus the additional presence of light 

or image. Second, this methodology can be used to 

identify when the addition of automation benefits 

operators and when it does not. In our example we 

found increased workload during automation 

engagement and automation disengagement but 

decreased workload while automation was in use. 

Finally, this methodology can be used to make 

objective comparisons across systems. For 

example we could quantify the difference in  
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 Tesla Autopilot Cadillac Super Cruise™ 

Task Vis. Aud. Cog. Psy. Tot. Vis. Aud. Cog. Psy. Tot. 

Engaging Automation 8.0 0.0 7.8 4.8 20.6 8.0 0.0 8.0 4.8 20.8 

Confirming Engagement 10.7 1.0 8.0 2.6 22.3 8.0 0.0 8.0 2.6 18.6 

"Driving” with Automation 4.0 0.0 4.6 2.6 11.2 4.0 0.0 4.6 0.0 8.6 

Automation Disengagement 8.0 1.0 10.5 2.6 22.1 8.0 1.0 10.5 2.6 22.1 

Manual Disengagement 10.7 0.0 8.0 2.6 21.3 8.0 0.0 8.0 2.6 18.6 

Figure 1: Graphical VACP Workload Ratings for Each Automation Subtask 

Table 2: VACP Workload Ratings for Each Automation Subtask. 
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operator workload between the hands-on and 

hands-off automated driving system. 

The work described in this paper highlights how 

IMPRINT can be used to inform design decisions 

in AGS, but this is only the beginning of this 

application. Our example was purposefully simple 

and only had drivers engage the vehicle 

automation while performing a single baseline 

task of maintaining a lane on the highway in order 

to show how the model computes workload across 

concurrent tasks by Visual, Auditory, Cognitive, 

and Psychomotor dimensions. In reality the value 

of IMPRINT is the ability to model the potential 

overlap between the wide varieties of driving tasks 

that occur for different types of driving missions, 

in different environmental conditions. The 

application of IMPRINT to AGS should model 

VACP workload demands of automation tasks 

across the variety of secondary automotive tasks 

used in National Highway Traffic Safety 

Administration research, including vehicle device 

oriented tasks such as manually tuning the radio, 

navigation, communication, and entertainment,   

portable device tasks including cell phones and 

tablets, and non-device oriented tasks including 

eating, drinking, grooming, and attending to 

passengers [17]. 

The value of IMPRINT in the AGS domain 

spans beyond system design. IMPRINT is utilized 

throughout the lifecycle of a wide array of 

complex military systems. As AGS are developed 

and actual performance data becomes available the 

task network model within IMPRINT can be 

augmented with performance data for each 

individual task for mean time, standard deviation, 

distribution curve, and completion rate [18].  As a 

result, these types of expanded task network 

models have demonstrated to provide useful, 

valid, and accurate predictions of the situations 

and circumstances in which human errors will 

occur within a system [19]. 

A wide variety of previous work in other 

transportation domains has demonstrated that 

accurate quantitative models of operator workload 

in highly automated systems can successfully 

inform user interface design decisions, predict 

performance impacts of new systems, and evaluate 

existing systems. IMPRINT shows great potential 

for valuable applications in the AGS domain and 

we hope to see it further developed. 
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